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Abstract-In this work, the hypersingular boundary element formulation for plate bending analysis
based on Reissner theory is presented. First order Taylor expansion are used to deal with the strong
singularity O(lir), whereas, rigid body considerations together with the Taylor expansion are used
to compute the hypersingulor kernels O(l/r'). The plate boundary is discretised into quadratic
isoparametric discontinuous boundary elements to satisfy the continuity requirements for the
boundary unknowns. Several examples are tested, including thin and thick plates. The results show
a good agreement with both the analytical solutions and the corresponding results for the standard
displacement boundary elemEnt formulation. '10 1998 Elsevier Science Ltd. All rights reserved

I. INTRODUCTION

In recent years, the application of the boundary element method (BEM) to plate bending
problems has gained some popularity. There are many publications in the literature applying
the BEM to the Kirchhoff-Love plate theory (see e.g. Bezine (1978), Stern (1979) and
Tottenham (1979)). However, this formulation lacks the sufficient number of boundary
conditions and does not account for transverse shear deformations. In addition, it yields
inaccurate distribution of the resultant shear force for the case of supported plate edge.

Reissner (1945) and (19~-7) presented a sixth order partial deferential equation theory,
which accounted for both the bending and transverse shear stresses. This theory has become
the general theory (Karam and Telles (1988)) in plate bending analysis, and allows analysis
of both thin and thick plates. Beams of rectangle cross sections may be analyzed with
Reissner's theory as shown in Karam and Telles (1992).

Vinturini and Paiva (1993) pointed out that using thin plate theory decreases the
problem dimension and the computational time. Guo-Shu and Mukherjee (1986) dem­
onstrated that by using thin plate theory with an additional degree of freedom for the
tangential boundary rotation (which gives the problem same dimensions as that of the
Reissner theory) many problems associated with that theory can be overcome. Recently,
Paiva and Neto (1995) confirmed the findings reported by Guo-Shu and Mukherjee (1986)
when dealing with slab-beam interaction problems. This demonstrates the advantage of the
Reissner plate theory over the thin plate theory.

Due to the stability and the wide range of applications of Reissner theory, some
researchers have applied the BEM to this theory. One of the early applications is due to
Vander Weeen (l982a) and (1982b) who derived the boundary integral equation and
successfully applied it to several problems.

t Corresponding author.
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Antes (1984a) tested the modified Trefftz method and the regular BEM. However, the
latter may not be a reliable method as it is dependent on the number and the location of
the collocation nodes. The indirect BEM for simply supported plates was presented by
Antes (1986). Other contributions regarding the geometric and stress singularities due to
concentrated loads can be found in Antes (1984b) and (1985).

Karam and Telles (1988) confirmed that Reissner's plate model is suitable for both
thin and thick plate:;. They extend the formulation to account for infinite regions. Later,
Long, et al. (1988), presented several problems of thin plates with sharp corners.

Barcellos and Silva (1989) presented a similar formulation to that of Vander Weeen
(1982a) for Mindlin plate model. Their formulation differs from Reissner theory in the
shear factor constant. Westphal and Barcellos (1990) discussed the importance of the
neglected terms in i:he fundamental solution derived by Vander Weeen (1982a). They
concluded that these terms have no effect on the results. They also showed how to move
from the Reissner fundamental solution to the Kirchhoff-Love fundamental solution, by
assigning zeros to the kernel parts related to shear deformations (Barcellos and Westphal
(1992)).

An alternative BEM formulation was derived by Katsikadelis and Yotis (1993). Their
formulation was expressed in terms of two potentials: a biharmonic and Bessel potential.
This method also depends on the solution of three integral equations plus three finite
difference equations. No free edge boundary conditions was presented in their work.

EI-Zafrany et d. (1994) derived the same fundamental solution for Reissner plate
theory as that of Vander Weeen (1982a), but here based on the Hankel integral trans­
formation. In their work EI-Zafrany et al. (1995), the transverse shear effect was separated
from the fundamental solution kernels to allow the analysis of thin plates (i.e., neglecting
the effect of the separated shear kernels). As it will be seen in this work, if accurate
integration schemes are used to evaluate the boundary element integrals, Reissner's theory
can be used for the c.nalysis of plates of any thickness.

Xiao-Yan (199:;) presented a new boundary integral formulation for Reissner's plate
theory. The main idea of this formulation, is to define new unknown boundary values in
terms of boundary stresses. So that, the boundary stresses can be directly computed in the
numerical solution, avoiding the use of both the boundary displacement derivatives and
finite difference schemes. It is worth noting that the fundamental solution in (Xiao-Yan
(1995)) has the same behaviour and order of singularity as the one by Vander Weeen
(1982a). This is because, both of the formulations are based on the same weighted residual
statement but different in the consideration of the boundary conditions.

Recently, the application of the hypersingular integral equation has been utilized in
elasticity problems and acoustics. These hypersingular integral equations have higher order
of singularity than the displacement boundary integral equation. There are many appli­
cations of the hypersingular equation in elasticity problems, such as the direct evaluation
of the boundary stress tensor (see e.. g. Huber et al. (1996)), crack modeling using the dual
BEM (see e.g. Portela et al. (1993)) and error estimation in the boundary element analysis
via the hypersingular residuals (see e.g. Paulino et at. (1996) and Guiggiani (1996)).
However, to the author's knowledge, the general derivation and the use of the hypersingular
equation in plate belding analysis via the BEM has not been reported.

In this work, the hypersingular stress boundary integral equations are derived by
considering the behaviour of the stress integral identity at a boundary point. The Taylor
series method was u,ed to expand the terms inside the singular kernels around the singular
point. All of the singular integrals are taken in either the Cauchy principal value sense or
the Hadamard finite part sense. First order Taylor expansion was used to deal with strong
singularity O( 1jr), whereas, rigid body consideration together with the Taylor expansion
were used to compute the hypersingular kernels 0(1jr2

).

The plate boundary is discretised into discontinuous quadratic boundary elements to
satisfy the continuity requirement for the boundary unknowns (Portela et al. (1993)).
Several examples of plates with different thickness and beams are tested. The results show
a good agreement with both of the analytical solutions and the corresponding results of the
standard displacement boundary element formulation.
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2. BASIC THEORY AND THE FUNDAMENTAL SOLUTIONS
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In this section, the basic equations of the Reissner plate bending theory are reviewed.
Throughout this paper, the mdicial notation is used. Greek indices will vary from I to 2
whereas, Roman indices from I to 3. The comma subscript will be used to denote differ­
entiation, such as ( . )." stands for the derivative of ( . ) with respect to the coordinate Xx'

Now, consider an arbitrary plate of thickness h, as shown in Fig. 1 with a domain n
and boundary r in the Xi space. The Xl -x2 plane is assumed to be located at the middle
surface X 3 = O. The generaliz~ddisplacement are denoted as u" where, u, denotes rotations
(cPXl and cPx,) and U3 denotes the transverse deflection w in X3 direction. According to
Reissner (1945), the generalized stress-displacement relationships can be written as follows,

I-V( 2v ~) vqM,p = D--
2

U,fJ+ u/1>+-I-u....o,fJ + b,p
. . -v'" (1-V)),2

(1)

where M,p and Q, are the bending and shear stresses respectively, and D = Ehj.!2(1- v2
)

is the plate flexural rigidity, E is Young's modulus, v is Poisson's ratio, A = .JlO/h is the
shear factor and q is the distnbuted load per unit area. Throughout this paper q is assumed
to be constant.

The Equilibrium equations can be written as follows,

M'P./I - Q, = 0

Q",+q = 0

The generalized traction:; at a boundary point can be defined as

p, = M,pnfJ

P3 = Q,n,

(2)

(3)

where np are the components of the outward normal vector to the plate boundary r.
The generalized Navier equations can be formed by substituting eqn (1) into eqn (2)

to give

.x"

Fig. 1. Plate geometry.
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(4)

where Lt is the generalized Navier differential operator and bi is the generalized body force
components.

The fundamental solution of eqn (4) is obtained by taking bki = b(X', X)bki where,
b(X', X) is the Dirac delta function, k is arbitrary direction of the applied unit load, and X,
X' E n are the field and source points respectively in an infinite plate.

By using Hormender method (Vander Weeen (1982a)), the fundamental solution ut
can be obtained. Then, the traction fundamental solution p~ can be obtained by utilizing
eqn (1) together with eqn (3), noting that the differentiation here is with respect to the
coordinates of thelield point X. The expressions for u~ and p~ are listed in the Appendix.

It can be seen (from the Appendix) that the fundamental solution is in terms of the
following functiom:

A(z) = Ko(z) + ~[KI (z) - ~]

B(z) = Ko(z) + ~[KI(Z)-n (5)

in which Ko(z) and K j (z) are modified Bessel functions (Abramowitz and Stegun (1965)),
z = Ar and r is the absolute distance between the source and the field points. By expanding
the modified Bessel functions for small arguments (Abramowitz and Stegun (1965)), it can
be seen that A(z) is a smooth function, whereas, B(z) is a weekly singular O(ln r). Therefore
u~ is a weekly singular and PS has a strong singularity O(1/r).

3. DISPLACEMENT BOUNDARY INTEGRAL EQUATION

The displacement boundary integral equation can be derived from the weighted
residual statement (Brebbia et al. 1984). Introducing the fundamental fields to this state­
ment, the displacement equation is obtained as:

Cij(x')Uj(x') +£ptex', x)ui(x) drex) = Ir ut(x', x)pJx) drex)

+ r(UMx',X)--_v_-u::'~(X',X))q(X)dn(X) (6)In (1- V)}.2 .

where t denotes a Cauchy principal value integral, x', x E r are source point and field
point on the boundary respectively, and cij(x') are the jump terms from the principal value
integral of the strongly singular integral in the kernel Pi1. The value of clj(x') is equal to
l/2bij for x' located on a smooth boundary, however it can be evaluated for a general case
from the consideration of the generalized rigid body movements. The domain integral in
eqn (6) can be transferred to the boundary integral, in the case of a uniform load (q = con­
stant) to give:

r(U~(X"X)-_\_'-ui~.~(X',X))q(X)dn(X)In (1- V)}.2

= q r (V7,(X" x) - ~v_~ ut(x', x))n,(x) drex) (7)
Jr (I-v)t.~

where V! are the particular integrals of the equations V2 V! = U~ and the expression for
vt, can be found in the Appendix.
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Equation (6) represent~: three integral equations (two (i = rt. = 1, 2) for rotations and
one (i = 3) for deflection).

Bending and shear stresses at any internal point X' can be computed by differentiating
equation (6) with respect to the coordinate of the source point XI and then substituting in
equation (I) to give

MaP(X
/
) = LU:pk(X', X)Pk(X) dl(x) - LP:Pk(X/, X)Uk(X) dl(x)

+q r W:p(X/,x)drcx )+ v qbapJr (I-V»).2

Qp(X') = t Ur/lk(X', x)Pk(x) dr(x) - t pr/lk(X', X)Uk(X) dl(x)

+q,t WMX', x) drcx) (8)

where the kernels Utb Ptk and W; are given in the Appendix.
As it can be seen the kernels Utk and W; contain weak and strong singularities,

respectively, whereas, the kernel Ptk contains strong and hypersingular terms as X' ---> r.

4. STRESS BOUNDARY INTEGRAL EQUATION

Equation (6) is also valid for an external point X" ¢n, r with cij = O. The corresponding
stress identity may be obtaim:d in similar way as eqn (8) to give

tP:Pk(X", X)Uk(X) drcx) = t U:/lk(X", x)Pk(x) drcx)

+qt W:p(X", x) drcx)

fr prpk(X",X)Uk(X)dr(x) = t UrPk(X", X)Pk(X) drcx)

+qLWMX",x)drcx) (9)

The stress boundary integral equation is formed by considering the behaviour of eqn
(9) when the point X" tends to the boundary r at x'. To satisfy the continuity requirements,
the point x' is assumed to be on a smooth boundary. A semicircular domain with boundary
r:is constructed around the point x' as shown in Fig. 2.

Taking the limit as X" ---> x', eqn (9) can be rewritten as follows

E~ t-r,+r: P:p,(x', x)u,(x) drcx) +!~ t-r,+r: P:/13 (Xl, X)U3 (x) dl(x)

= ~~ t-r,+r: U:p;,(x',x)p;,(x)drcx)+!~I1J fr-r,+ri U:/l3(x',x)p3(x)dl(x)

+q!~I1JL-r,+r: W:/Jx/,x)drcx ) (10)

and
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Fig. 2. The semicircular region around the source point.

!~9? r Pfpy (x', X)Uy(X) dr(x) + !~9? r N p3(X', X)U3 (X) dr(x)
)r-1[+r: Jr-r,,+r1i

= !~9? r Ufpy(x',x)py(x)dr(x)+!~ r Ufp3(X', X)P3(X) dr(x)
Jr-1:+r: Jr-rt+rj~

Equations (10) and (11) represent the bending stress and shear stress boundary inte­
grals, respectively, at the boundary point x'.

4.1. The bending stress integral equation
Equation (10) can be written in the following form

(12)

Assuming the coundary values of U i are CI." (0 < ,I. < 1) and using a Taylor expansion
for the integrands up to two terms, the integral If can be written as

If = !~9? r . '. r:p,(x', x)uy(x) dr(x) = !~9? r P:py(x', x)u, (x) dr(x)
Jr-r[.+1£ J1-r l

+!~] t~P:py(x', x)[uJx) - uy(x') - uy.e(x')(xe - x'e)] dr(x)

+Uy(x')!~ r.P:/i,(x"x)dr(x)+u;..e(X')!~ r.P:/i,(x',x)(xe-x'e) dr(x) (13)Jit Jr:
It has to be noted that the integral If contains the kernel P:/iy which is hypersingular

of 0(1/r2
) so that t\\.o terms of the Taylor expansion for the integrand are appropriate.

In the above integrals, the second term of the right hand side (RHS) is zero in the limit
as e -> O. The first and third RHS terms together form a Hadamard finite part integral.
From Fig. 2, the following relationships can be observed

r=e, r.n==-l, dr=edcp, r.I=-nj=coscp, r.2=-n2 =sincp,

and
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(14)

By considering the above relationships, together with the following limits (Abramowitz
and Stegun (1965))

and

(15)

the last term on the RHS leads to the following jump terms

D(1 +v)(1-v) , , ,
= 16 (u~,,(x)+ux,p(x)+Uy,,(x)bxfl) (16)

Now, the integral If can be written as follows

* - f * ' D(1 +v)(1-v) , , ,II - r p.~Jx , x)uy(x) dr(x) + 16 (u~,.(x ) + u.,~(x ) +Uy,y(x )b.~) (17)

where of denotes the Hadamard finite part integral.
The integral n can be treated in a similar way as that of the integral If. Only one term

of Taylor expansion is needed for n as the kernel P:~3 contains a strong singularity of
O(1/r), So that the integral Ir can be written as follows

n =~~ L_r,+r/:~3(X"X)U3(X)dr(X) =!~ L-r, P:fl3 (x',x)u3(x)dr(x)

+~~ L/:fl3(X" X)[U3(X) -U3(X')] dr(x) +U3(X') ~~L/:fl3(X" x) dr(x) (18)

In the above integrals, th,~ second term on the RHS is zero in the limit as c ---+ 0, The first
term on the RHS form a Cauchy principal value integral. By considering the relationships in
eqn (14) and the limits in eqn (15), the jump terms that appear from the last term on the
RHS vanish. So that the integral n can be written as follows

(19)

In a similar way, the integrals n, It and n can be treated. Noting that the weak
singular terms do not lead to any jump terms, the final forms for these integrals can be
obtained as follows
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*-1 * ' ((3V-1) , 2(v-3) ,)13 - Jr U,py{x ,x)p,(x) dr(x) - 16 Myy(x )lJ,p - 16 M,p(x) ,

* f w* (' )d ( vq (1 + v) ~Is = q ,p x ,x r x)+ -4-u,P
r (1-V»).2

(20)

(21)

(22)

Now substituting from eqns (17), (19)-(22) into eqn (10), and using eqn (1), it gives

~Mxp(x')+£P:p)(x',x)uy(x) dr(x) +£P:p3 (x',x)u3(x)dr(x)

== £U:/iy(x', x)py(x) dr(x) +f U:P3 (x', X)P3 (x)r(x)

f 1 qv
+q W:p(x', x) dr(x) +"2 lJx/i

r (1-v),J.2

which is the bending stress boundary integral equation.

4.2. The shear stress integral equation
Equation (11) can be written in the following form

(23)

(24)

The integrals n to no can be treated in a similar way as in the treatment of the integrals
in the moment stress integral equation, to give

and

I~ = £ut/i3 (x', X)P3 (x) dr(x) _ gp~X') ,

Substituting from eqns (25)-(29) into eqn (11), and using eqn (1) gives

(25)

(26)

(27)

(28)

(29)
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~ Qp(x') +£Ptpy(x', x)u)'(x) drex) +£N /I3 (x', x)u3(x) df(x)

= Lutp,(x',x)Pr(x) dr(x) +£utP3(x',x)P3(x)drex)+qLWMx',x)drex) (30)

which is the shear stress boundary integral equation.
Equations (23) and (30) represent three stress integral equations at a boundary point

x'. These equations can be used in a post-processing procedure to evaluate the stress tensor
on the boundary.

If equations (23) and (30) are dotted by np at the collocation point x', the following
two expressions can be written

~P,(X')+np(x') £P:py(x', x);~,(x) drex) +np(x') £F:P3 (x', X)U3 (x) drex)

= np(x') fr U:py(x', x)p,(x) dr(x) +np(x')tU:P3 (x', X)P3 (x) drex)

f I qv
+ qnp(x') W:p(x', x) df(x) + -2 n,(x')

r (l-v)1l2

and

(31)

~P3 (x') +np(x') £Ptpy(x', x) lJy(x) df(x) +np(x') £PtP3(x', X)U3 (x) dr(x)

= np(x')f utpj(x', x)Py(x) df(x) +np(x') £UtP3(x', X)P3 (x) drex)

+qnp(x')LWMx', x) drex) (32)

Equation (31) and (32) represent three integral equations (the hypersingular equations)
in terms of boundary tractions, and can either replace or work together with the three
displacement integral equatiols in eqn (6) to form the dual boundary integral formulation.

5. NUMERICAL IMPLEMENTATION

In the present work, quadratic isoparametric elements have been used to discretize the
boundary of the plate. The local position of the element nodes are general, to allow for the
use of continuous or discontinuous elements. Either the displacement or the traction
boundary integral equations can be used. In case of using the traction boundary integral
equations, only discontinuous elements are employed, to satisfy the assumed continuity
requirements for the boundary variables.

After this discretisation, '~qn (6) or eqns (31) and (32) can be written in the following
form

[H]{u} = [G]{p}+{Q} (33)

where [H] and [G] are the well-known boundary element influence matrices, {u} and {p}
are the boundary displacement and traction vectors, respectively, and {Q} is the domain
load vector. This system of algebraic equations can be solved for the boundary unknowns.
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6. SINGULARITIES

In this section, the treatment of the singularities that occur in both of the displacement
and the traction boundary integral equations will be discussed. Singularities in the dis­
placement BIE will be reviewed in a quick manner, as it can be found in other references,
whereas singularities in the traction BIE will be discussed in detail.

6.1. Singularities in the displacement BIE
In the displacement boundary integral equation, the influence [G] matrix and the load

vector {Q} contair weakly singular kernels, which can be cancelled using a nonlinear
coordinate transformation as in Telles (1987). The influence matrix [H], on the other hand,
contains a strongly singular kernel, which can be evaluated indirectly using the so called
generalized rigid bady movements. This can be achieved as follows. If a traction-free
problem is considered, three independent cases may be considered:

• u, = C then U2 ,= 0 and U3 = -riC
• U2 = C then Ul ,= 0 and U3 = - r2C
• U3 = C then U2 ,= 0 and U2 = 0

where C is an arbitrary constant and r, = Xx - x',.
By applying these cases to the system of eqn (33), the following expressions can be

written

W'(x') = - L[P~(x', x) +(- rx)P~ (x', x)] dr(x)

H 13 (x') = - LPMx', x) dr(x) (34)

where Hl(x') (i.e., It"(x') and H 3(x')) includes the diagonal sub-matrix and the jump term
cij in the influence matrix [H]. The first term in the first integral and the second integral
were already computed, however, the second term in the first integral remains to be
computed. Fortunately, in this term, the distance r, cancels the weak singularity in P:3 and
the strong singularity in PT3 in the singular element under consideration.

6.2. Singularities if.: the traction BIE
In the tractior. BIE, the singularity order is higher than in the displacement BIE. In

this section, each element of eqn (33) will be individually discussed. Three orders of
singularity will app~ar in this formulation. The weak singularity is treated using a nonlinear
coordinate transformation as in Telles (1987). The strong singularity is treated using a first
order Taylor expansion of the fundamental solution terms around the singular point, as in
Aliabadi et al. (1985). In this case, the singular term is isolated and integrated analytically.
The hypersingular kernels will be computed indirectly using generalized rigid body move­
ments together with the first order Taylor expansion.

The influence matrix [H]. In the [H] matrix, the kernels P:fJ3 and PTfJi' are strongly
singular, whereas, I:he kernels P:ri-,. and PTrJ3 are hypersingular.

In the off-dia~;onal sub-matrices (see Fig. 3), the element shape function, will reduce
the order of singularities by one. This means that, the elements corresponding to the kernels
P:fJ3 and PTrh have smooth integrands, whereas, the elements of the kernels P:p;. and PTP3

still remain strongly singular.
Now, consider the kernels P:fJ'i for any off-diagonal sub-matrix, the corresponding

integral can be written in the local coordinate system as
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element under
consideratwn

• ~ n2 ~ ~
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[H]
or =
[G]

Diagonal
submatrix

Off--Diagonal
submatrices

Fi~ _3. Sub-matrices for the influence matrices.

(35)

where r e denotes the boundary of the singular element, cD' is the element shape function
corresponding to the node i in the element under consideration and J is the Jacobian of the
transformation form x, coordinate system to the local coordinate system ~ (i.e.
dr = J(~) d~). To deal with this strong singularity, consider the first order Taylor expansion
about the singular point ~o in the local coordinate system, as follows

in which

. . . . I.
cD'(¢) = cD'(~o) + cD"(~(J)<5~ + 2cD"'(~o)<5e + ...

I
J(~) = J(~o)+J'(~o)<5~+ 2/"(~O)<5~2+ ...

1
x,(O = x,(~o)+x~(¢o)<5~+ 2x~(~o)()(+",

3

X,(¢) = L Mi(~)X~
i=l

(36)

(37)

where, x~ is the coordinate Xx at the nodal point i, M' are the geometric shape functions,
( . )' denotes the derivatives of ( . ) with respect to ~ and ()~ = ¢ - ~o. Using eqn (36), the
following expressions for the quadratic element can be written (Aliabadi et al. (1985))

where

I
r, = x~(~o)()¢+ 2«~o)<5¢2

r = 1<5~kfclo +d l <5~ +d2b¢2

do = x~(~o)x~(¢o)

d, = x~(~o)x~(~o)

(38)

(39)

Noting that in the case of the off-diagonal sub-matrices cDi(¢node) = 0 for ~node =1= ~o,
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and using the expressions in eqns (36) and (38), together with the limits in eqn (15), eqn
(35) can be written in the following form

(40)

and

+[- 2(1 - v)(n,x;,x~ + /l/iX~X;. + i5;..xxpx;J/lIJ + e5,liX~X;I/lIJ) - 2(v - 1) (i5"/ix ;.xo/lo + llr<Xp)]3'2

-[8(1 +v)(x~xpx;.x;lnO)]3'3} (41)

where S~y is the isclated singular term, in which all of the involved functions are computed
at the singular point ~o. The terms .?li can be defined as follows

(42)

As can be seen, the first integral on the RHS of eqn (40) is not singular and can be
evaluated using Gauss-Legendre scheme. The second integral is computed in the Cauchy
principal value sense and is computed analytically.

Following a sinilar procedure for Pt/i3, gives

(43)

and

(44)

On the other hand, the diagonal sub-matrices contain strongly singular and hyp­
ersingular terms. Herein, the generalized rigid body movements will be considered in a
similar way to tha: of the displacement BIE, to compute these terms indirectly. By con­
sidering the generalized rigid body movements, a similar equation to that in eqn (34) is
obtained, i.e.,

Hi"(x') = -n/i(x') t [P~x(x', x)+ ( - r')P~3 (x', x)] dr(x)

H 3 (x') = - nfi(x')tPti3 (x', x) dr(x) (45)

Unlike the di~placement BIE, the second term in the first integral of eqn (45) is still
singular. The distance r, cancels the strong singularity in the kernel P~/i3 ; but it only reduces
the singularity order of the kernel Pt/13 to that of a strong singular kernel. This term is
considered in Cauchy principal value sense. By employing a first order Taylor expansion
as in eqn (36) together with the limits in eqn (15) for the variables in the integral, and noting
that on the diagonal sub-matrices <li(~node) = I for ~node = ~o, the following expression can
be written
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and

-D(l-v),F
SRB(!' ) -- J{ , or 2 J " Y},fJ ',,0 -- 4 n/ix ,3 1- xfJx,xon()3 Jn - (47)

where the first integral on the RHS of eqn (46) is not singular, and the second integral
contains the singular term and is computed analytically.

The influence matrix [0]. In this matrix, the integrands in the off-diagonal sub-matrices
are smooth due to the element shape functions. The diagonal matrices, on the other hand,
contain the kernels U:/i3 and U~fJ, which are weakly singular. A nonlinear coordinate
transformation (Telles, 1987; is used to cancel these singularities. On the other hand, the
two kernels, U:fJ)' and U~fJ3 are strongly singular. By employing a first order Taylor expansion
(eqn (36)) together with the limits in eqn (15) for the variables in these integrals, and noting
that on the diagonal sub-matrices <l>i«(node) = I for (node = (0 the following expressions can
be written

(48)

(49)

and

where the first integral on the RHS of eqn (48) and eqn (49) is not singular, and the second
integral contains the singular term and is computed analytically. The terms :Yi are defined
in eqn (42).

The domain load vector {Q}. There are two kernels in the consideration of the domain
load vector term. The first kernel is Wr/i which is weakly singular, hence, a nonlinear
coordinate transformation may be used to treat this kernel. The second one is W~i' which
is strongly singular. By employing a first order Taylor expansion (eqns (36) and (38»
together with the limits in eqn (15) for the variables in this integral, the singular term is
isolated as follows

and



2242 Y. F. Rashed et al.

-v I
S~a(~o) = -4 J{((I- v)(x~nn+x;,n,) + (v - l)b,fjx'.n.]:Y]

P (1- V)}.2 n \ I' P , ,

+ [2(1 + v)x~x/Jx;n)']:Y2} (53)

where the first integral on the RHS of eqn (52) is not singular, and the second integral
contains the singular term and is computed analytically. The terms -'!Ii are defined in eqn
(42).

7. NUMERICAL EXAMPLES

In this section, several numerical examples are analyzed using the present boundary
element formulation. In all examples quadratic discontinuous boundary elements are used
for both the traction boundary integral equation (TBIE) and the displacement boundary
integral equation (DBIE) to allow the comparison with the same discretisation scheme;
unless stated. The collocation points are placed at ~ = 0.7, 0, -0.7. It was found that the
numerical results are not significantly affected by the use of continuous or discontinuous
elements for the D HIE, or even by the location of the collocation points in the discontinuous
elements for both the DBIE or the TBIE. Gauss-Legendre scheme is used to compute the
regular integrals with 10 points. The results obtained by the TBIE are compared with
analytical solutions and the results from the standard DBIE.

7.1. Circular clamped thick plate
In this exampl~, a clamped circular plate is considered. A uniform load of intensity q

is applied over the plate domain. Due to symmetry, only one quarter ofthe plate is modelled.
The plate is of radius a and with a thickness of 0.2 a. The exact solution for this problem
is given in (Vander Weeen (1982a)). Table I shows the results obtained together with the
exact results. In the case of TBIE the plate was discretized into 16 boundary elements. As
can be seen in Tabk 1 the results are in a good agreement with the exact solutions.

7.2. Simply supported thin square plate
Consider a plate shown in Fig. 4. This plate is a square with sides of 4 m length and

simply supported from all sides. A uniform load of -0.64 tf/m2 is applied over the plate
domain. Seven internal points are considered (see Fig. 4). Due to the problem symmetry,
only one quarter of the plate was modelled in the analysis for the points I to 6. The results
for point 7 which is located at the center of the plate were obtained by modelling the
complete plate. Tables 2, 3 and 4 present the displacements, bending moments and shear
stresses at the internal points shown in Fig. 4. The exact results for this problem can be
found in (Timoshenko and Woinowsky-Krieger, 1959) and the corresponding numerical
results for both the DBIE and the TBIE are based on a model with 64 boundary elements.
Referring to (Karam and Telles, 1988), accurate results for the DBIE can be achieved using
only eight continuous elements; but it was found that by employing 32 elements the results
for the TBIE has an error of 2 to 7% ; whereas, with 64 elements (as shown in the tables)
the error is within 0.6%.

Table 1. Circular clamped plate results

64D 16D 16 16 2
-w -cP, -------=;-Moo -------:,- il/rr -Q,

a qa4 qa' qa" qa- qa

Exact TBiE Exact TBIE Exact TBIE Exact TBIE Exact TBIE

0.00 1.1829 1.1839 0.0000 (LOOOO 1.3274 1.3329 1.3274 1.3329 0.00 0.00
0.25 1.0503 1.05e I 0.2344 0.2342 1.2087 1.2085 1.1212 1.1210 -0.25 -0.25
0.50 0.6996 0.6995 0.3750 0.3750 0.8524 0.8523 0.5024 0.5023 -0.50 -0.50
0.75 0.2714 0.2714 0.3281 0.3281 0.2587 0.2586 -0.5288 -0.5289 -0.75 -0.75
1.00 0.0000 0.0000 0.0000 0.0000 -0.5726 -0.5629 - 1.9726 - 1.9694 -1.00 -1.00
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Fig. 4. Simply supported thin square plate.

Table 2. Thin square plate, displacements at internal points

¢, x 10' (rad) ¢, x 10' (rad) wx 10' (m)

Pt Exact DBIE TBIE Exact DBlE TBIE Exact DBIE TBIE

-0.1844 -0.1844 -0.H55 -0.1844 -0.1844 -0.1854 -0.6134 -0.6145 -0.6176
2 -0.3552 -0.3551 -0.3564 -0.1424 -0.1423 -0.1433 -0.4776 -0.4785 -0.4809
3 -0.4902 -0.4902 -O.4S 16 -0.0778 -0.0778 -0.0785 -0.2641 -0.2645 -0.2664
4 -0.2752 -0.2752 -0.2763 -0.2752 -0.2752 -0.2763 -0.3725 - 0.3733 -0.3752
5 -0.3822 -0.3821 -0.3833 -0.1510 -0.1510 -0.1518 -0.2066 -0.2070 -0.2084
6 -0.2117 -0.2116 -0.2125 -0.2117 -0.2116 -0.2125 -0.1151 -0.1154 -0.1163
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.7094 -0.7110 -0.7119

Table 3. Thin square plate, bending moments at internal points

Mn(trm/m) M,,(tf'mlm) M'T(tf- m/m)

Pt Exact DBIE TBIE Exact DBIE TBlE Exact DBIE TBIE

-0.4396 -0.4396 -0.4402 0.0378 0.0377 0.0378 -0.4396 -0.4396 -0.4402
2 -0.3744 -0.3745 -0.3749 0.0715 0.0715 0.0717 -0.3504 -0.3505 -0.3509
3 -0.2410 -0.2410 -0.2414 0.0960 0.0960 0.0964 -0.2027 -0.2028 -0.2030
4 -0.3014 -0.3015 -0.3018 0.1367 0.1367 0.1370 -0.3014 -0.3015 -0.3018
5 -0.1982 -0.1983 -0.1985 0.1857 0.1856 0.1861 -0.1769 -0.1770 -0.1772
6 -0.1212 -0.1212 -0.1213 0.2577 0.2576 0.2580 -0.1212 -0.1212 -0.1213
7 -0.4905 -0.4904 -0.4904 0.0000 0.0000 0.0000 -0.4905 -0.4904 -0.4904

Table 4. --hin square plate, shear stresses at internal points

Q,(tf//r) Q,(tlim)

Pt Exact DBIE TBlE Exact DBIE TBIE

I 0.1529 0.1527 0.1531 0.1529 0.1527 0.1531
2 0.3278 0.3275 0.3279 0.1200 0.1199 0.1203
3 0.5471 0.5467 0.5474 0.0668 0.0667 0.0671
4 0.2613 0.2610 0.2614 0.2613 0.2610 0.2614
5 0.4505 0.4502 0.4506 0.1485 0.1482 0.1485
6 0.2713 0.2710 0.2713 0.2713 0.2710 0.2713
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7.3. Thin cantilever plate
In order to demonstrate the stability of the proposed model over the thin plate theory,

the following example is considered. A thin square cantilever plate of side length a is
subjected to a uniform load of intensity q over the plate domain. The Poisson ratio was set
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Fig. 5. Shear stresses in the thin cantilever plate.

to zero to allow for the comparison with beam theory. Figure 5 shows the effective shear
stress distribution aong the clamped edge. As can be seen from Fig. 5, the DBIE gives a
stable solution with only a few elements (eight elements per side), whereas, the TBIE gives
the same stability with 16 elements per side. The thin plate solution (Paiva, 1991), on the
other hand, fails to reach the exact distribution, even with the proposed twisting moment
distribution along the boundary according to Paiva (1991).

7.4. Torsion of cube
In this exampk, a three dimensional structure is modelled using the present formu­

lation. Consider a CJbe of side length of 2 a (as shown in Fig. 6), under torsional rotation
at its free end face. To model the loading, the following generalized displacement are
prescribed at the free end face,

cP, = ({Ja

W = ({Jay

where qJ is the applied prescribed torsional rotation.

Fig. 6. Cube under torsion.
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Table 5. Torsion of cube results

y rP,(y) M,,(Y) Q,(y)

a rP,(a) M,,(O) Q,.(a)

Exact Ref* TBIE Exact Ref* TBIE Exact Ref" TBIE

0.00 0.000 0.000 0.000 1.000 1.018 1.000 0.000 0.001 0.000
0.25 -0.292 -0.291 -0.290 0.948 0.938 0.948 0.174 0.174 0.174
0.50 -0.387 -0.386 -0.382 0.785 0.809 0.785 0.376 0.377 0.376
0.75 -0.055 -0.053 -0.051 0.485 0.469 0.485 0.638 0.638 0.638
1.00 1.000 1.001 1.000 0.000 0.035 0.000 1.000 0.999 1.000

• Ref: Vander Weeen (l982a).

The problem was analysed using 128 boundary elements to model the high stress
concentration and the free edge condition. The results in non-dimensional form are pre­
sented in Table 5 together with the results of Vander Weeen (1982a) and the analytical
solution given by Reissner (1945). As shown in Table 5, the results of the TBIE are in
excellent agreement with the analytical results but they require finer discretisation than the
DBIE (Vander Weeen, 1982::,).

7.5. Timoshenko beam
To demonstrate the capability of the proposed model in analysing beams, a Timo­

shenko beam of length 10 m is considered. The beam has a cross section of 3 m depth>< 1
m width. The following mat~rial properties are considered v = 0.2 and E = 2 X 106 tlm2

•

The beam was fixed from one end and left free as a cantilever. A concentrated load of P = 1
ton is applied at the free end of the beam. A mesh of 20 elements along the beam length
(for each side) x 4 elements along the beam width (per side) is used to model the beam
mid-plane. The analytical solution for that problem considering shear deformation can be
found in Timoshenko and Goodier (1934). The results for the rotation in the x direction
and the transverse deflection along the beam center line are plotted together with the
analytical results in Fig. 7. The bending moment and shearing force diagrams along the
same line are also plotted in Fig. 8. As can be seen from these figures the results of the
TBIE are in good agreement with that of the DBIE. A difference (6%) between the BIE
and the analytical solution for the maximum deflection of the beam is obtained. It has to
be noted that there are small inaccuracies in the bending moment and the shearing force
near the fixed edge. These are mainly due to the poor discretisation of the beam width.

7.6. Stresses on the boundary
The direct evaluation of stresses on the boundary is one of the important applications

of the hypersingular integral equations. To demonstrate this application, the problem of

109876
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Fig. 7. Rotation and deflection results for the Timoshenko beam.
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the simply supported plate in example 2 with the same geometry and under the same loading
conditions, is considered. The plate was analyzed twice to compare the stresses on a
boundary line (v-axes) for a quarter of the plate with the stresses when this line is considered
as an internal line for the full plate analysis. In the first analysis, a quarter of the plate was
considered by empoying 16 boundary elements per side. The stresses were computed
directly by employing the hypersingular integral equation (HSIE) in eqns (23) and (30) on
the boundary along .v-axis, see Fig. 4. In the second analysis, the complete plate was
reanalyzed by using 16 continuous boundary elements per side. The stresses were computed
at the internal points, which are in the same place as the boundary points in the first
analysis. Figures 9 and 10 show the shear stresses and the bending stresses respectively,
along the considered line. It can be seen, the results of the hypersingular integral equation
are in excellent agre~ment with the internal point computation of the stresses.

8. CONCLUSIONS

A hypersingular boundary element formulation for plate bending analysis is developed
in this work. The formulation utilizes Reissner plate bending theory, which accounts for
the transverse shear deformation, and provides an adequate number of the necessary
boundary conditions. The formulation was developed by considering the stress identity at
a boundary point. By using Taylor series, and assuming an appropriate continuity of the
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boundary functions, it was stlown that the stress integral equations have the same jump
term as that of elasticity problems. First order Taylor expansion and rigid body generalized
movements were used to compute the singular integrals. Only discontinuous boundary
elements were used for the TBIE. Several examples were presented including thick plates,
thin plates, and beams. It was shown that considering shear deformations is very important
in the stability of the shear resultant tractions. More elements, especially for free edge
conditions are required for the TBIE. The presented results are in good agreements with
the analytical solutions and those obtained from the standard displacement boundary
element formulation. The stress integral equation allows the direct computation of the
boundary stresses. This model can be considered as the bases for the dual boundary element
formulation.
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APPENDIX

The expression for the kernel ut are given by

u:p ,= I {[8B(.::)-(I-v)(21nz-I)]6,~-[8A(z)+2(1-v)]r,rl,)
8rrD(1-I')

IU:3 ,= - uto = 8rrD(2In.:: -I )1'1',

ui, ,= [(1--v).::'(1nz-I)-8Inz]
8rrD(I- 1')/.'

where

1" = (x, - X;)(X, - x;)

z=h

or
I' =-

,::! ex"!

The expression for the hrnel Pt are given by

-I
P*, = -4 [(4A(z)+2zK,(z)+ l-v)(6,.. r,+r,n). rrr

+ (4A(z) + I + 1')1': n, - 2(8A(:') +2zK, (:,) + 1-1')1',1':.,.,]

(AI)

(A2)
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-(l-V)[((l+V») ]n =-8-n~ 2(l_v)Jnz-1 n,+2r"rJ"

where r.n = r,lJ.nr
The expression for the kernel Vip are given by

n,ff = -rr/I [32(2Inz-I)-z'(l-v)(4Inz-5)]
U8nD(I-v)P

The expression for the kernel Uijk are given by

J
U:~;, = 4nr[(4A(z)+2zK,(z)+ I-v)("/Jx+il,r~)

-2(8A(z) + 2zK, (z) + I-v)r,r/,r,; + (4A(z) + I +v)",/Ir,]

r* _-=.Q-v)[(~ " )' , ](,'63- 8n 2(I_v)ln"-1 il,p+ ..r,r,p

)'
Ur/I = -2' [B(z)il,p-A(z)r,rp]. n

The expression for the kernel Pijk are given by

+ (4A(z) + I + 3v)il,/ln; - (l6A(z) + 6zK, (z) + Z2 Ko(z) + 2- 2v)

x [(n,r,p + npr,)r,,. + (il;,r.!; + ";~r,)r,]

-2(8A(z) + 2zK, (z) + J + v)(il'I,r.,r" +n; r"r,~)

+4(24A(z) + 8zK, (z) +z' Ko(z) +2- 2v)r,rprr,,}

D(I-'!)),'
P:Ii3 = ~-.-[(2A(z)+zK,(z))(rl,n,+r.,ntJl

- 2(4A(z) + zK, (z»r,rpr, +2A(z)il"I,r.,]

-D(l-v)2 .
pr1h. = ~-4-1-rr~-[(2A(z) +zK, (z»)(";I,r, +r;nll)

+2A(::)n,.r/l- 2(4Alz) +zK, (z»r;rpr,l

D( I - V»),2 , , ]
pr~3 =~--,-[(z-B(z)+I)fl/,-(z-A(z)+2)r~r,

4nr~

The expression for the kernel w~ a:'e given by

v
+4[(I-v)r,rp+vil,p]r) - --- U:/,.. fl;

(I-v)),'

I v
Wr/I = ·;-[(2 In z-l)np+2r,6'-'] - ---, Ur6/ ,·,·

!,n (I-V)A"

2249

(A3)

(A4)

(A5)

(A6)

(A?)


